PaintersView: Automatic Suggestion of Optimal Viewpoints for 3D Texture Painting

Yuka Takahashi, Tsukasa Fukusato, Takeo Igarashi University of Tokyo

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

- Intuitive 3D painting
- Rotate manually to desired viewpoint, paint until satisfied
- Rotate the model again and again

Given this trefoil knot model

- Pop up the hidden region
 - multi-layer segmentation
- Still need to manually rotate the model

Direct drawing on 3D shapes with Automated Camera Control [Ortega and Vincent CHI 2014]

- Long curves
 - Automated viewpoint control
- Not applicable to 3D painting in general

Undo(Ctrl+z)

I/O

Download

Load Texture

Close Controls

Our Method

user's painting

viewpoints selection

viewpoints selection

Good Viewpoint Criteria (In short)

- Many front facing faces from the view
- Many unpainted region in the view

Good Viewpoint

Bad Viewpoint

- Front facing faces
- Unpainted

- Few front facing faces
- Already painted

Contribution

- A novel concept to interactively suggest optimal viewpoints for the 3D painting task
- A simple yet effective algorithm to estimate optimal viewpoints using information from 3D geometry and a current texture

	No manual	Pop up the	Supports 3D	
	rotation	hidden region	painting in general	
Fu et al.		\bigcirc	\bigcirc	
Ortega and Vincent	\bigcirc			
PaintersView	\bigcirc	\bigcirc		

Uniformly sample around the input model

Uniformly sample around the input model

Uniformly sample around the input model

Viewpoint Function For each viewpoints: $E_{geometry} + w E_{paint}$ $\underline{E}_{geometry}$: Geometry information E_{paint} : Current texture painting w = 0.04 (empirically)

Optimization Problem

$$\underset{i \in \{1, \cdots, N\}}{\operatorname{arg max}} E_{geometry} + w E_{paint}$$

Optimization Problem

$$\underset{i \in \{1, \cdots, N\}}{\operatorname{arg max}} E_{geometry} + w \ E_{paint}$$

Optimization Problem

$$\underset{i \in \{1, \cdots, N\}}{\operatorname{arg max}} E_{geometry} + w E_{paint}$$

Take one which maximizes the energy function

Geometry Term

Objective: Prefer the viewpoint with more visible horizontal faces

Face normal

Direction vector from the viewpoint camera to the model

Current Texture Term

Objective: Prefer the viewpoint with more unpainted faces

$$E_{paint} = \frac{1}{|F_i|} \sum_{f \in F_i} Upaint(f)$$

Four Viewpoint Selection

Four Viewpoint Selection

Score

2.53

Four Viewpoint Selection

User Interaction

Annotation Tool

Limit F_i to annotated faces

Occlusion Access Tool

Users switch to make front-most faces translucent

User Study

- Task1: Manual Control vs Our Method
- Task2: without (w/o) Epaint term vs with (w/) Epaint term
- 6 participants
 - Aged from 20 to 30 years old
 - Casual users who had at least one year's experience with 3D or painting software

Example:

- Two unpainted models
 - A torus model and a fertility model
- Asked users to perform 3D painting, using the example as a reference

Average of manual control and viewpoint selection operation

Manual Control

Viewpoint Selection Operation

Average of manual control and viewpoint selection operation

Manual Control

Viewpoint Selection Operation

Task2: w/o Epaint vs w/ Epaint

Example:

- One unpainted model (Bunny)
- Asked users to perform 3D painting, using the example as a reference

Task2: w/o Epaint vs w/ Epaint

Q1: More comfortable?

Q2: Over all usability

: w/o Paint Feature

Task2: w/o Epaint vs w/ Epaint

Average of manual control and viewpoint selection operation

Comments (Summary)

- P1: It was easier to interactively find best viewpoints without slight adjustments.
- P2: The viewpoint candidates are very useful for understanding the shape of the 3D models and current textured results at painting time.
- P3: I wanted to **directly customize the viewpoint candidates**, for example, the opposite side of the current viewpoints.

Limitations/Future Work

Refine when the pixel color is different from neighbors

Utilize history for viewpoint suggestion

History Assisted View Authoring for 3D Models [Chen et al. CHI 2014] Support multi-layer texture painting

Conclusion

$$\underset{i \in \{1, \cdots, N\}}{\operatorname{arg max}} E_{geometry} + w E_{paint}$$

Find the next viewpoints for drawing on the unpainted areas Optimization function using geometry and intermediate paint results

The proposed system was rated higher on average by user study Acknowledge

This work was supported by JSPS KAKENHI grant No. JP17H00752 & JP19K20316, Japan.

T1 Fertility Our System by P4. Speed x4

Backup Slides

T1 Fertility Our System by P4. Speed x4

Ŧ	Meta					
	Mesh		Model 2 ~			
View Options			Method 1 ~			
- Brush						
	Opacity			1		
	Brush Size			15		
	Color	#26cc3f				
	Background #ffffff					
٠	Edit					
Þ	I/O					
Close Controls						

T1 Fertility Manual by P4. Speed x4